Sujet Baccalauréat spécialité Centres Étrangers−Suède J1 bis ∾ 7 juin 2024

ÉPREUVE D'ENSEIGNEMENT DE SPÉCIALITÉ

Exercice 1 4 points

Pour chacune des affirmations suivantes, indiquer si elle est juste ou fausse. Chaque réponse doit être justifiée. Une réponse non justifiée ne rapporte aucun point.

Affirmation 1 : Soit (E) l'équation différentielle : y' - 2y = -6x + 1.

La fonction f définie sur \mathbb{R} par : $f(x) = e^{2x} - 6x + 1$ est une solution de l'équation différentielle (E).

Affirmation 2 : On considère la suite (u_n) définie sur \mathbb{N} par

$$u_n = 1 + \frac{3}{4} + \left(\frac{3}{4}\right)^2 + \dots + \left(\frac{3}{4}\right)^n$$

La suite (u_n) a pour limite $+\infty$.

Affirmation 3 : On considère la suite (u_n) définie dans l'affirmation 2.

L'instruction suite (50) ci-dessous, écrite en langage Python, renvoie u_{50} .

```
1 def suite(k):
2    S=0
3    for i in range(k):
4     S=S+(3/4)**k
5    return S
```

Affirmation 4 : Soit a un réel et f la fonction définie sur $]0; +\infty[$ par :

$$f(x) = a \ln(x) - 2x.$$

Soit *C* la courbe représentative de la fonction *f* dans un repère $(O; \overrightarrow{i}, \overrightarrow{j})$.

II existe une valeur de a pour laquelle la tangente à C au point d'abscisse 1 est parallèle à l'axe des abscisses.

Exercice 2 5 points

Au cours d'une séance, un joueur de volley-ball s'entraîne à faire des services. La probabilité qu'il réussisse le premier service est égale à 0,85.

On suppose de plus que les deux conditions suivantes sont réalisées :

 si le joueur réussit un service, alors la probabilité qu'il réussisse le suivant est égale à 0,6; si le joueur ne réussit pas un service, alors la probabilité qu'il ne réussisse pas le suivant est égale à 0,6.

Pour tout entier naturel n non nul, on note R_n l'évènement « le joueur réussit le n-ième service » et $\overline{R_n}$ l'évènement contraire.

Partie A

On s'intéresse aux deux premiers services de l'entraînement.

- 1. Représenter la situation par un arbre pondéré.
- **2.** Démontrer que la probabilité de l'évènement R_2 est égale à 0,57.
- **3.** Sachant que le joueur a réussi le deuxième service, calculer la probabilité qu'il ait raté le premier.
- **4.** Soit *Z* la variable aléatoire égale au nombre de services réussis au cours des deux premiers services.
 - **a.** Déterminer la loi de probabilité de *Z* (on pourra utiliser l'arbre pondéré de la question 1).
 - **b.** Calculer l'espérance mathématique $\mathrm{E}(Z)$ de la variable aléatoire Z. Interpréter ce résultat dans le contexte de l'exercice.

Partie B

On s'intéresse maintenant au cas général.

Pour tout entier naturel n non nul, on note x_n la probabilité de l'évènement R_n .

- 1. **a.** Donner les probabilités conditionnelles $P_{R_n}(R_{n+1})$ et $P_{\overline{R_n}}(\overline{R_{n+1}})$.
 - **b.** Montrer que, pour tout entier naturel non nul n, on a : $x_{n+1} = 0.2x_n + 0.4$.
- **2.** Soit la suite (u_n) définie pour tout entier naturel n non nul par : $u_n = x_n 0.5$.
 - **a.** Montrer que la suite (u_n) est une suite géométrique.
 - **b.** Déterminer l'expression de x_n en fonction de n. En déduire la limite de la suite (x_n) .
 - c. Interpréter cette limite dans le contexte de l'exercice.

Exercice 3 7 points

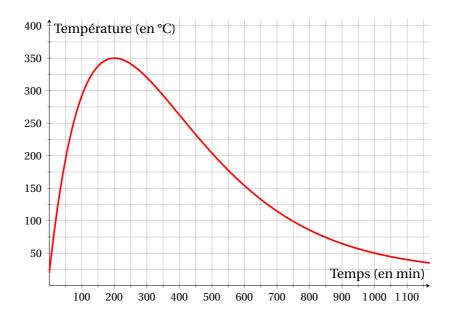
Un organisme certificateur est missionné pour évaluer deux appareils de chauffage, l'un d'une marque A et l'autre d'une marque B.

Les parties 1 et 2 sont indépendantes.

Partie 1 : appareil de la marque A

À l'aide d'une sonde, on a mesuré la température à l'intérieur du foyer d'un appareil de la marque A.

On a représenté, ci-dessous, la courbe de la température en degrés Celsius à l'intérieur du foyer en fonction du temps écoulé, exprimé en minutes, depuis l'allumage du foyer.



Par lecture graphique:

- 1. Donner le temps au bout duquel la température maximale est atteinte à l'intérieur du foyer.
- **2.** Donner une valeur approchée, en minutes, de la durée pendant laquelle la température à l'intérieur du foyer dépasse 300 °C.
- **3.** On note f la fonction représentée sur le graphique.

Estimer la valeur de $\frac{1}{600} \int_0^{600} f(t) dt$. Interpréter le résultat.

Partie 2: étude d'une fonction

Soit la fonction g définie sur l'intervalle $[0; +\infty[$ par :

$$g(t) = 10t e^{-0.01t} + 20.$$

- 1. Déterminer la limite de g en $+\infty$.
- **2. a.** Montrer que pour tout $t \in [0; +\infty[$, $g'(t) = (-0.1t + 10)e^{-0.01t}$.
 - **b.** Étudier les variations de la fonction g sur $[0; +\infty[$ et construire son tableau de variations.
- **3.** Démontrer que l'équation g(t) = 300 admet exactement deux solutions distinctes sur $[0; +\infty[$. En donner des valeurs approchées à l'unité.
- **4.** À l'aide d'une intégration par parties, calculer $\int_0^{600} g(t) dt.$

Partie 3: évaluation

Pour un appareil de la marque B, la température en degrés Celsius à l'intérieur du foyer *t* minutes après l'allumage est modélisée sur [0 ; 600] par la fonction *g*.

L'organisme certificateur attribue une étoile par critère validé parmi les quatre suivants :

- Critère 1 : la température maximale est supérieure à 320 °C.
- Critère 2 : la température maximale est atteinte en moins de 2 heures.
- Critère 3 : la température moyenne durant les 10 premières heures après l'allumage dépasse 250 °C.

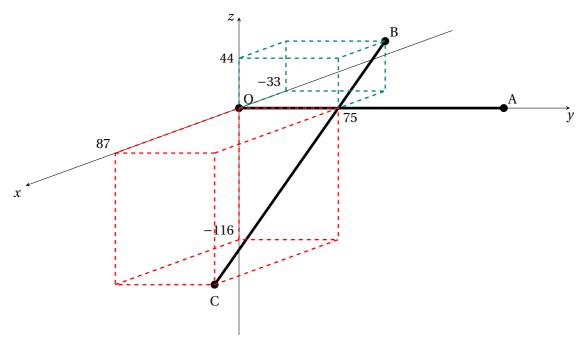
— Critère 4 : la température à l'intérieur du foyer ne doit pas dépasser 300 °C pendant plus de 5 heures.

Chaque appareil obtient-il exactement trois étoiles? Justifier votre réponse.

Exercice 4 4 points

On modélise un passage de spectacle de voltige aérienne en duo de la manière suivante :

- on se place dans un repère orthonormé $(O; \vec{i}, \vec{j}, \vec{k})$, une unité représentant un mètre;
- l'avion nº 1 doit relier le point O au point A(0 ; 200 ; 0) selon une trajectoire rectiligne, à la vitesse constante de 200 m/s;
- l'avion nº 2 doit, quant à lui, relier le point B(-33 ; 75 ; 44) au point C(87 ; 75 ; -116) également selon une trajectoire rectiligne, et à la vitesse constante de 200 m/s.
- au même instant, l'avion nº 1 est au point O et l'avion nº 2 est au point B.



- **1.** Justifier que l'avion nº 2 mettra autant de temps à parcourir le segment [BC] que l'avion nº 1 à parcourir le segment [OA].
- 2. Montrer que les trajectoires des deux avions se coupent.
- 3. Les deux avions risquent-ils de se percuter lors de ce passage?