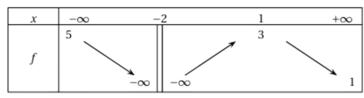
Metropole Bac maths 2024

EXERCICE 4

Pour chacune des affirmations suivantes, indiquer si elle est vraie ou fausse. Chaque réponse doit être justifiée. Une réponse non justifiée ne rapporte aucun point.

1. On considère ci-dessous le tableau de variations d'une fonction f définie sur \mathbb{R} $\{-2\}$.



a. Affirmation 1 :

La droite d'équation y = -2 est asymptote horizontale à la courbe \mathcal{C}_f de la fonc tion f.

Lorsque
$$x \dashrightarrow -2^-$$
 , $y \dashrightarrow -\infty$

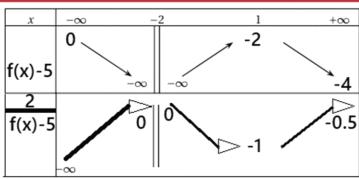
Lorsque
$$x --> -2^+$$
, $y --> -\infty$

La droite d'équation x = -2 est asymptote verticale à la courbe représentative de la fonction

Les droites d'équation y = 5 et y = 1 sont asymptotes horizontales.

Affirmation 1 : Fausse

b. Affirmation 2: $\lim_{x \to -\infty} \frac{2}{f(x) - 5} = +\infty.$



$$\lim \left(\frac{2}{f(x)-5} \right) = -\infty$$

Affirmation 2: Fausse

2. On considère la fonction g définie sur \mathbb{R} par $g(x) = x e^{-x}$.

a. Affirmation 3:

Le point $A\left(2; \frac{2}{e^2}\right)$ est l'unique point d'inflexion de la courbe \mathscr{C}_g de la fonction g.

$$g(x) = xe^{-x} \text{ est de la forme } u(x)v(x)$$
 $u(x) = x$ $u'(x) = 1$
 $v(x) = e^{-x}$ $v'(x) = -e^{-x}$ $g'(x) = e^{-x}$ $-xe^{-x}$
 $g''(x) = -e^{-x}$ $-(e^{-x} - xe^{-x})$ $g''(x) = -2e^{-x} + xe^{-x}$
 $g''(x) = e^{-x} (x - 2)$ $g''(x)$ change de signe pour $x = 2$ et uniquement pour $x = 2$ alors $g(2) = 2e^{-2} = \frac{2}{e^2}$

Affirmation 3: Vraie

b. Affirmation 4:

Pour tout nombre réel x appartenant à $]-\infty$; 2[, on a $g(x) \le x$.

$$g(x) = xe^{-x}$$
 Soit $g(x) - x = x(e^{-x} - 1)$

Х	-∞	-2	0	1	+∞
e ^{-x}	+∞	+	1	<u>+</u> _	 ⊳0
e -x - 1	+∞	+	0-		
x	-∞	<u> </u>	0-	_±	-
g(x) - x			0	-	3

On a constamment g(x) - x < 0 sauf pour x = 0 cad g(x) < x sauf pour x = 0 auquel cas g(x) = x

Affirmation 4: Vraie

3. Affirmation 5:

L'équation $x \ln(x) = 1$ admet exactement deux solutions sur l'intervalle]0; $+\infty[$.

$$f(x) = x ln(x)$$
 est de la forme $u(x)v(x)$ avec $u(x) = x$ $u'(x) = 1$
$$v(x) = ln(x) \quad v'(x) = \frac{1}{x}$$

f'(x) = In(x) + 1 La fonction In(x) est définie, croissante et continue pour x > 0

х	0	1/e	_1_	е	+∞
f'(x)	-∞	0 +	 1	2	<u>></u>
f(x)	٩	- <u>1</u>			+∞

La fonction ln(x) est définie, croissante et continue pour x > 0

D'après le corollaire du théorème des valeurs intermédiaires, elle passe 1 fois et 1 fois seulement par la valeur 1 dans cet intervalle Affirmation 5 : Fausse